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The possibi l i ty of obtaining a regula r  solution to incor rec t ly  stated problems without determining 
the regular izat ion pa rame te r  is discussed.  Data are  given on a calculation of a model example 
for  an inverse  boundary problem of heat  conduction. 

Many inverse  problems of heat  conduction are  reduced to the solution of an equation of the f i rs t  kind 

A u  = f6 (1) 

and are  incor rec t ly  stated problems.  In [1-3] it was proposed that such problems be solved using the minimi-  
zation of the smoothing functional 

r (u~) = inf r (u) = inf {[IAu - -  f~llL~ T ~z u L~I" (2) 
t /  u 

Then, with the appropriate  choice of the regular izat ion pa rame te r  ~ [~ =O(52)], the solution u 5 of the 
problem (2) will converge uniformly as 6 ~ 0 to u T,  the solution of the problem (1) with exact  data. 

Let  us consider  the possibil i ty of applying i teration methods of the s teepes t -descent  type to the solution 
of the problem (2). We designate L =d/dt; L : U  ~ L2[0 , Tm]. Here U ~ L2[0, ~'m] is a set of absolutely con-  
tinuous functions whose der ivat ives  are  integrated with a square.  It is assumed that f6E L2[0 , ~'m]. Suppose 
that it is also known that UTE U 0, where 

U 0 = {u : u (0) = 0, u E U}. (3) 

For  the mapping L : U 0 ~ L 2 [0,  T in] .  The continuous inverse mapping 

L v - t  =i"  v(~)d~,  v E L z [ O ,  x~] 

exists .  For  it the conjugate opera tor  

L - l"g = j~ g (~) 4 ,  g E Lz [0, ~,~l 

obviously exists.  We introduce the opera tor  C = AL -t into the analysis.  
to the following variat ional  problem: 

Then the problem (2) is equivalent 

1 (4) 
r inf q~(v)= inf {~ i [Cv- - f~ i  ~ ~rFv2~ ~ ,Zo., ~" X . . . .  ~ 

vGL~  v ~ L ~  " " 

If ~ is chosen f rom the d iscrepancy [4], then the problem (4) is none other than the finding of the condi- 
tional minimum of the functional ~2(v) = IJv II~ in t hese t  

2 
D6 = {v : [ICy - -  [6[[~ 2 ~ 8 ~, v E L2 [0, Tm]}, 

i .e. ,  finding the project ion of zero in the set D 5. 

To find the approximate solution to this problem we used the method of s teepest  descent with respect  to 
the antigradient of the discrepancy.  The i terat ion sequence for this method will have the form (for the case 
of a l inear opera tor  A) 

v~+~ = v .  - - E ~ c * ( c v . .  -- h) ,  vo (~) = o, (5) 
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Fig. 1. Reconstruct ion of heat 
flux by the method of s teepest  
descent:  q) heat flux (10 e W/m2); 
t) t ime (sec); solid curve) exact  
solution; points: 1) flux recon-  
s t ructed  on exact  data; 2) flux 
recons t ruc ted  on per turbed data 
(perturbation distr ibuted by a 
uniform law with a maximum 
sca t t e r  equal to 10~ of the max i -  
mum value of the exact  data). 

where 

C*  = L - i "  A * ;  ~,, = I I C * ( C v , , -  fs)li z ...... 

tlCC* (cv,, - -  h)l? 

By integrating Eq. (5) one can obtain the sequence direct ly  in t e rms  of the original  problem: 

u,~+l = u,~ - -  ~I.L - 1 L  - l "  A*  ( A u  n - -  f~), Uo ('c) ~ O, (6) 

ItL - 1 .  A* (Au.  - -  fa)p 

~"= IIAL - I  L - l "  A* ( Au .  - -  f~)ll - - - - -7 -  " " 

This procedure  is rea l ized on a computer  r a the r  easily.  

The sequence (6) was obtained for  a l inear  opera tor  A. However,  in the case of an opera tor  A which is 
nonlinear but F reche t  differentiable one can cons t ruc t  a sequence analogous to (5) and (6). For  this one ob-  
viously must  show that the d iscrepancy  functional J(v) = lICv - fh~ 2 will be Freche t  differentiable in this case 
a lso,  and one must  find an express ion  for  the gradient  J(v). 

Let  B be a F reche t  differentiable opera tor ;  i .e. ,  B(v + Av) can be represented  in the form 

B (v + Av) = By + Bv Av + a~ B (v, Av), 
! where B v is a l inear  opera to r ,  and 

Then for J(v) = iIBv - fU 2 we have 

lim I!%(v, Av)tl = 0 .  
ila~l-0 IIAo~ 

J (v + Av) - -  J (v) = lIB (v + Av) - -  ft~ - -  II Bv  - -  ftr 2 --- 2 ( B y  - -  f ,  B~ Av) -F 

+ 2 ((By - -  f), o~ B (v, Av)) -1- lIB[, Av + t% (v, Av)I ~ = 2 ((B:)* (By - -  f), Av) + to 1 (v, Av), 
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where  it  is obvious that 

lim [col(v, hv)[ = 0 .  
I~l-*o [lAvtl 

I t  r e m a i n s  to be shown that  the di f ferent iable  ope ra to r  C follows f r o m  the different iable  ope ra to r  A. 

Actual ly ,  

C (v + Av) - -  C (v) = A (L-iv + L-lAy) - -  A L -  iv = AL-,~ L - l A Y  ~- o~ A ( L -  iv, L -  lay). 

F r o m  the continuity and f ini teness  of the ope ra to r  L -1 it follows that 

lim lk% (L- iv; L- 1AV)I I ]t1:0 A (L- iv; L- lAy)if ]t~A (U, AU)[t 
flaoI,~o [IAvll = [iL-itl lim ~ '  ~ ]JL-~[ lira = 0. 

Thus ,  the ope ra to r  C is F r e c h e t  d i f ferent iable  and its der iva t ive  has  the f o r m  

C: = AL-,o L-k  

Then 

(c~)* = (L-')* (A~-,o)*. 

Hence,  for  the nonlinear  ope ra to r  A we have the i tera t ion sequence 

u,+ i = u,, - -  [~L -1L-Z*(A'u,~) * ( A u ~ - -  fs), u0(0) = 0. 

Unfortunately,  the equations for  the choice of the s tep fin in (5) and (6) a re  valid only for  the l inear  case.  

Fo r  inverse  boundary p rob l em s  of hea t  conduction the d i sc repancy  gradient  can be found f r o m  the so lu-  
tion of a p rob lem conjugate to the p rob lem in inc remen t s  [5]. 

It  should be noted that  the r e q u i r e m e n t  UT(0) = 0 can be weakened in the l inear  case :  It  is sufficient  to 
know the value of the r econs t ruc t ed  function at the left  end of the in te rva l  of observa t ion ,  and using the p r in -  
ciple of superpos i t ion  the p rob l em  is reduced  to the case desc r ibed  above. The given method can be used  for  
a p rob l em in a nonlinear s t a t ement  ff UT(0 ) can be taken as equal  to zero  within the l imi t s  of accuracy  of the 
solution of the p rob lem.  

An impor tan t  fea ture  of the given a lgor i thm is the fact  that the calculat ion of the regular iza t ion  p a r a m -  
e t e r  is not r equ i red  in it ,  although the solution of (4) is equivalent  to the p rob lem of the solution of (2) with 
the regu la r iza t ion  p a r a m e t e r  chosen with r e s p e c t  to the discepancy.  

In accordance  with this a lgor i thm we solved a l inear  inverse  p rob lem of heat  conduction consis t ing in the 
recons t ruc t ion  of the hea t  flux at one of the boundar ies  of an infinite p l ane -pa ra l l e l  plate with a given t e m p e r a -  
ture  at  the other  boundary,  which is t he rma l ly  insulated. The r e su l t s  of the calculat ion of one of the model 
examples  a re  p resen ted  in Fig. 1. The a lgor i thm showed high stabi l i ty  per tu rba t ions  of the initial information.  
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are  the o p e r a t o r s ;  
is the ope ra to r  inverse  to ope ra to r  L; 
is the ope ra to r  conjugate to ope ra to r  A; 
is the ope ra t o r  der iva t ive  of ope ra to r  A at the point u; 
is the e l emen t  of space of solut ions;  
is the initial  information;  
is the e r r o r  of initial  informat ion;  
is the regu la r iza t ion  p a r a m e t e r ;  
is the Lagrange  mul t ip l ie r ;  
a r e  the functionals;  
is the point at  which the functional @~(u) r eaches  the exac t  lower l imit ;  
is the space of solutions;  
is the subspace  of the space U; 
is the se t  containining the unknown solution; 
is the e l emen t  of Hi lber t  space;  
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~n 
C~i, WB, co A 
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is the depth of descen t  at n- th  step along d iscrepancy  gradient;  
a re  the res idual  t e r m s  of equations for  finite inc remen t s ;  
a re  the time; 
is the right-hand value of complete time interval; 
is the heat flux. 
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S O L U T I O N  OF  I N V E R S E  C O E F F I C I E N T  P R O B L E M S  

BY T H E  R E G U L A R I Z A T I O N  M E T H O D  U S I N G  

S P L I N E  F U N C T I O N S  

A.  M. M a k a r o v  a n d  M. R .  R o m a n o v s k i i  UDC 536.2:517.9 

The problem of de termining  the unknown coefficient  in an equation of conservat ion of ma t t e r  is 
discussed.  

In a region Q={(x, t}: (0, I) x (0, I)} let the equation of conservation of matter be assigned in the form 

Lu~---~Ltu--aLf,.'~u - da LCx 2) u =  f i x  , t), (x, t)EQ, 
du (1) 

u(x, 0 )=~(x) ,  D l u = % i t ) ,  D ~ u = % ( t ) ,  (x, t) eOQ, 

where  u(x, t) is the p roce s s  under considerat ion;  a(u) is an unknown coefficient;  f(x, t) is a function of internal  
sources ;  O(x), ~l(t), and ~0~(t) a re  functions descr ib ing  the initial and boundary conditions of the problem;  I t ,  
L (1), and L (2) are  di f ferent ia l  ope ra to r s  express ing  one o r  another  conservat ion law; D 1 and D 2 a re  boundary-  

X X 
condition ope ra to r s ;  8Q is the boundary of the region. 

Within the f r a m e w o r k  of models  with the simultaneous est imat ion of p a r a m e t e r s  the following fo rmula -  
t ions a re  known: f i r s t ,  when the coefficient  is sought f rom an additional condition to the problem (1) [1, 2], 
and second,  when it  is sought f rom known 6-approximat ions  to u and f,  i .e . ,  f rom elements  fi and f such that 
Pu(U, fi) -< 51 and 0F(f,  f) <- 52 [3]. The second formulat ion,  although connected with a g rea te r  volume of mea -  
su remen t s ,  sti l l  allows one to cons t ruc t  models  of p r o c e s s e s  which are  c loser  to the actual p roces se s .  We 
will have this formula t ion  in mind below. 

Following [4], we introduce the regula r iz ing  functional 

r [a] = (~ ( L u - -  [)2 dxdt + a o(~) "~  : (2) 

where a is the regularization parameter; fl(k) is a stabilizer of the form 
P,q 

p ,q  

where  a* is the t r ia l  e lement .  

dxdt, k = 1, 
P ( a - - a * )  2 ~ i duq du q 

\ Ox" Ox" \ Ot q Ot q 
Q 

(3) 
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