ONE METHOD OF SOLVING INCORRECTLY
STATED PROBLEMS

O. M. Alifanov and S. V. Rumyantsev UDC 536.24

The possibility of obtaining a regular solution to incorrectly stated problems without determining
the regularization parameter is discussed. Data are given on a calculation of a model example
for an inverse boundary problem of heat conduction.

Many inverse problems of heat conduction are reduced to the solution of an equation of the first kind

Au=f, 48]
and are incorrectly stated problems. In [1-3] it was proposed that such problems be solved using the minimi-
zation of the smoothing functional

&, (ud) = inf P, (u) = inf {JAu — fol?, +olu'lf ) (2)

Then, with the appropriate choice of the regularization parameter @ [@ =0(5%], the solution ug of the
problem (2) will converge uniformly as 6 — 0 to up, the solution of the problem (1) with exact data.

Let us consider the possibility of applying iteration methods of the steepest-descent type to the solution
of the problem (2). We designate L =d/dt; L: U —~ I,[0, 7). Here U < L,[0, Tp,] is a set of absolutely con-
tinuous functions whose derivatives are integrated with a square. If is assumed that £5€ L,[0, Tw]. Suppose
that it is also known that up € Uy, where

Uy ={u:u(0)=0, ueU}. 3

For the mapping L : Uy —~ L, [0, Tm]. The continuous inverse mapping
T

Lt = v@®dE, vEL, [0, Tyl
b

exists., For it the conjugate operator

L= g® & geL0 1,

T

obviously exists. We introduce the operator C = AL into the analysis, Then the problem (2) is equivalent
to the following variational problem:

)

P, (v9) :glLf P (v) = v’é‘z_f (MCo—folf, + WL} A= ;—
If ¢ is chosen from the discrepancy [4], then the problem (4) is none other than the finding of the condi-
tional minimum of the functional Q{v) = llv] sz in the set
Dy={v:|Co—[qf <8 veL,I0, tl}
i.e., finding the projection of zero in the set Dj.

To find the approximate solution to this problem we used the method of steepest descent with respect to
the antigradient of the discrepancy. The iteration sequence for this method will have the form (for the case
of a linear operator A)

Yne1 =Y — ﬁnc* (Cvn - fé)' Ug (T) =0, (5)
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Fig. 1. Reconstruction of heat
flux by the method of steepest
descent: q) heat flux (10° W/m?;
t) time (sec); solid curve) exact
solution; points: 1) flux recon-
structed on exact data; 2) flux
reconstructed on perturbed data
(perturbation distributed by a
uniform law with a maximum
scatter equal to 10% of the maxi-
mum value of the exact data).

where

IC* (Cop — o)

* = L_—l. A*; n = ”
c 5 B = iCC Co, — P

By integrating Eq. (5) one can obtain the sequence directly in terms of the original problem:

Uy = thy — B L™ L A% (At — o), tp(0) =0, ®

B, = L™ A* (Au, — [P
" JALTT LTV A% (Au, — P

This procedure is realized on a computer rather easily.

The sequence (6) was obtained for a linear operator A, However, in the case of an operator A which is
nonlinear but Frechet differentiable one can construct a sequence analogous to (5) and (6). For this one ob-
viously must show that the discrepancy functional J(v) = lov - faﬂz will be Frechet differentiable in this case
also, and one must find an expression for the gradient J(v).

Let B be a Frechet differentiable operator; i.e., B(v + Av) can be represented in the form
B(v+ Av) = Bv -+ B, Av + ag(v, Av),
where By, is a linear operator, and

lim _,,_______‘“‘DB (v, Ao =
JAd)»0 J|Av)

Then for J(v) = |Bv — f|f we have
j(v + Av)— J (v) = |B (v -+ Av) — it — |Bo — ft = 2 (Bv— f, B, Av) +

+2(Bv— ), @g(v, Av)) -+ 1B, Av —}- oy (v, Av)P =2 ((B; ¥*(Bv — ), Av) + o(v, Av),
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where it is obvious that
oy (0, Av)l
lag+o  [Agf

0.

It remains to be shown that the differentiable operator C follows from the differentiable operator A.
Actually,

Clo-+ M) —C(v) = AL+ L7HA0) — AL0 = Ap=5 L7MA0 + @ (L700, L7A0).

From the continuity and finiteness of the operator L™t it follows that

N o RO A o ISR N .0 S
A = Tad = I i e S R T A

Thus, the operator C is Frechet differentiable and its derivative has the form
Co=Ar-»L7
Then
(Coft = (L™ (AL-)*

Hence, for the nonlinear operator A we have the iteration sequence

Uy =ty — B L™ LT (An ) (A, — fs), #,(0)=0.
Unfortunately, the equations for the choice of the step g8, in (5) and (6) are valid only for the linear case.

For inverse boundary problems of heat conduction the discrepancy gradient can be found from the solu~
tion of a problem conjugate to the problem in increments [5].

It should be noted that the requirement u(0) = 0 can be weakened in the linear case: It is sufficient to
know the value of the reconstructed function at the left end of the interval of observation, and using the prin-
ciple of superposition the problem is reduced to the case described above. The given method can be used for
a problem in a nonlinear statement if up(0) can be taken as equal to zero within the limits of accuracy of the
solution of the problem.

An important feature of the given algorithm is the fact that the calculation of the regularization param-~
eter is not required in it, although the solution of (4) is equivalent to the problem of the solution of (2) with
the regularization parameter chosen with respect to the discepancy.

In accordance with this algorithm we solved a linear inverse problem of heat conduction consisting in the
reconstruction of the heat flux at one of the boundaries of an infinite plane-parallel plate with a given tempera-
ture at the other boundary, which is thermally insulated. The results of the calculation of one of the model
examples are presented in Fig. 1, The algorithm showed high stability perturbations of the initial information,

NOTATION
A, L, C,B are the operators;
L-! is the operator inverse fo operator L;
A¥* is the operator conjugate to operator A;
A is the operator derivative of operator A at the point u;
u is the element of space of solutions;
s is the initial information;
) is the error of initial information;
o is the regularization parameter;
A is the Lagrange multiplier;
<1>g,, @5, J are the functionals;
ug, is the point at which the functional ®,(u) reaches the exact lower limit;
U is the space of solutions;
Uy is the subspace of the space U;
Dg is the set containining the unknown solution;
v is the element of Hilbert space;
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bn is the depth of descent at n-th step along discrepancy gradient;
wy, wB, wp are the residual terms of equations for finite increments;

t, T are the time;
™m is the right-hand value of complete time interval;
q is the heat flux.
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SOLUTION OF INVERSE COEFFICIENT PROBLEMS
BY THE REGULARIZATION METHOD USING
SPLINE FUNCTIONS

A. M, Makarov and M. R. Romanovskii UDC 536.2:517.9

The problem of determining the unknown coeffxcxent in an equation of conservation of matter is
discussed.

In a region Q={(x, t): (0, 1) X (0, 1)} let the equation of conservation of matter be assigned in the form

Lu=Lu—alPu—2 1Dy, 5 (x HeQ,

T du 6]
u(x, 0)=9(x), Du=q,(), Du=q,t) (x, HeNX,

where u(x, t) is the process under consideration; a(u) is an unknown coefficient; f(x, t) is a function of internal

sources; ¢(x), ¢i(t), and ¢,(t) are functions describing the initial and boundary conditions of the problem; 14,

LW, and L ?) are differential operators expressing one or another conservation law; Dy and D, are boundary-

condition operators; 8Q is the boundary of the region.

Within the framework of models with the simultaneous estimation of parameters the following formula-
tions are known: first, when the coefficient is sought from an additional condition to the problem (1) 1, 2],
and second, when it is sought from known d-approximations to u and {, i.e., from elements i and { such that
pyfu, 8) = &; and py(f, f) = 6, [3]. The second formulation, although connected with a greater volume of mea~
surements, still allows one to construct models of processes which are closer to the actual processes. We
will have this formulation in mind below.

Following [4], we introduce the regularizing functional

@, ldl = ijj (Lu — f dedt + aQp%h @)

where « is the regularization parameter; Q(:;)q is a stabilizer of the form
*

if [pa—amp (

\du? du’
Q(k) — Q
" Fa e\, [(Fa a2
|S‘§ p ga _ . +q(_____-———)]dxdt, k=2,
L s " o \ 0t ot?

Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 34, No. 2, pp. 332-337, February, 1978, Original
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d’a d'a*

)2] dxdi, k=1,
(3)

where a* is the trial element.
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